Materials for MEMS manufacturing
The fabrication of MEMS evolved from the process technology in semiconductor device fabrication, i.e. the basic techniques are deposition of material layers, patterning by photolithography and etching to produce the required shapes.
Silicon
Silicon is the material used to create most integrated circuits used in consumer electronics in the modern industry. The economies of scale, ready availability of cheap high-quality materials and ability to incorporate electronic functionality make silicon attractive for a wide variety of MEMS applications. Silicon also has significant advantages engendered through its material properties. In single crystal form, silicon is an almost perfect Hookean material, meaning that when it is flexed there is virtually no hysteresis and hence almost no energy dissipation. As well as making for highly repeatable motion, this also makes silicon very reliable as it suffers very little fatigue and can have service lifetimes in the range of billions to trillions of cycles without breaking.
Polymers
Even though the electronics industry provides an economy of scale for the silicon industry, crystalline silicon is still a complex and relatively expensive material to be produced. Polymers on the other hand can be produced in huge volumes, with a great variety of material characteristics. MEMS devices can be made from polymers by processes such as injection molding, embossing or stereolithography and are especially well suited to microfluidic applications such as disposable blood testing cartridges.
Metals
Metals can also be used to create MEMS elements. While metals do not have some of the advantages displayed by silicon in terms of mechanical properties, when used within their limitations, metals can exhibit very high degrees of reliability. Metals can be deposited by electroplating, evaporation, and sputtering processes. Commonly used metals include gold, nickel, aluminium, copper, chromium, titanium, tungsten, platinum, and silver.
Ceramics
The nitrides of silicon, aluminium and titanium as well as silicon carbide and other ceramics are increasingly applied in MEMS fabrication due to advantageous combinations of material properties. AlN crystallizes in the wurtzite structure and thus shows pyroelectric and piezoelectric properties enabling sensors, for instance, with sensitivity to normal and shear forces.[5] TiN, on the other hand, exhibits a high electrical conductivity and large elastic modulus allowing to realize electrostatic MEMS actuation schemes with ultrathin membranes.[6] Moreover, the high resistance of TiN against biocorrosion qualifies the material for applications in biogenic environments and in biosensors.
MEMS basic processes
Basic Process | |||||||||||||||||||||||||||||
Deposition | Patterning | Etching |
Deposition processes
One of the basic building blocks in MEMS processing is the ability to deposit thin films of material with a thickness anywhere between a few nanometres to about 100 micrometres. There are two types of deposition processes, as follows.
Physical deposition
Physical vapor deposition ("PVD") consists of a process in which a material is removed from a target, and deposited on a surface. Techniques to do this include the process of sputtering, in which an ion beam liberates atoms from a target, allowing them to move through the intervening space and deposit on the desired substrate, and Evaporation (deposition), in which a material is evaporated from a target using either heat (thermal evaporation) or an electron beam (e-beam evaporation) in a vacuum system.
Chemical deposition
Chemical deposition techniques include chemical vapor deposition ("CVD"), in which a stream of source gas reacts on the substrate to grow the material desired. This can be further divided into categories depending on the details of the technique, for example, LPCVD (Low Pressure chemical vapor deposition) and PECVD (Plasma Enhanced chemical vapor deposition). Oxide films can also be grown by the technique of thermal oxidation, in which the (typically silicon) wafer is exposed to oxygen and/or steam, to grow a thin surface layer of silicon dioxide.
Patterning processes
Applications
In one viewpoint MEMS application is categorized by type of use.
In another view point MEMS applications are categorized by the field of application (commercial applications include):
Companies with strong MEMS programs come in many sizes. The larger firms specialize in manufacturing high volume inexpensive components or packaged solutions for end markets such as automobiles, biomedical, and electronics. The successful small firms provide value in innovative solutions and absorb the expense of custom fabrication with high sales margins. In addition, both large and small companies work in R&D to explore MEMS technology.
MEMS (Microelectromechanical systems)